If it's not what You are looking for type in the equation solver your own equation and let us solve it.
225(t)=16t^2+225
We move all terms to the left:
225(t)-(16t^2+225)=0
We get rid of parentheses
-16t^2+225t-225=0
a = -16; b = 225; c = -225;
Δ = b2-4ac
Δ = 2252-4·(-16)·(-225)
Δ = 36225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{36225}=\sqrt{225*161}=\sqrt{225}*\sqrt{161}=15\sqrt{161}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(225)-15\sqrt{161}}{2*-16}=\frac{-225-15\sqrt{161}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(225)+15\sqrt{161}}{2*-16}=\frac{-225+15\sqrt{161}}{-32} $
| 2n+3=6n+8/2 | | 9x+3=-33+3x | | 7x+3=21+5x | | 10x-12=6x+3 | | y-1/2+y+3/3=5/12 | | 6n+8=2n+3 | | 6n+8=2n3 | | 3n-1/8=2 | | 13-2x+27=150 | | 0.2^x=0.01 | | 1,2z-1=2/5 | | 5x-x=x-16-x | | 6x=5/6+4x | | 2,5=4x | | 4+7x+-2x=16+2x+-2x | | 14k-2k+2k-5k=9 | | 16v-9v-4v=18 | | 4z+2z-2z-3z+z=10 | | 4x/20-4=-1 | | 2x-1-x=14 | | 3u-u-u=20 | | 3b-2b-b+3b=18 | | 3=r/3.3. | | -5=3x+113 | | 2p-p+2p+p=12 | | 10u-8u+u=15 | | 2÷a+3÷2a=7 | | 2x-11=9x+5 | | -5y-7y-8=-2y-8 | | 3x-15,6=0 | | 2/a+3/2a=7 | | 6w+w-2w-w=16 |